
Indian Journal of Cryptography and Network Security (IJCNS)
ISSN: 2582-9238 (Online), Volume-2 Issue-2, November 2022

1

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.B1421112222
DOI:10.54105/ijcns.B1421.112222
Journal Website: www.ijcns.latticescipub.com

Abstract: The security of the Rivest-Shamir-Adelman (RSA)
public key algorithm depends on the difficulty of factoring the
modulus calculated by multiplying two large prime numbers. The
usefulness of the RSA public key algorithm lies in using one key
for encryption and another key for decryption. However, a poor
choice of the keys used in encryption and decryption can affect
the security of the RSA cryptosystem. Many proposals have been
made to modify the RSA cryptosystem in such a way that the
attacks on the RSA cryptosystem can be overcome. In this article,
we propose concealing the publicly disclosed parameters, the
encryption key and the common modulus of the RSA cryptosystem
by altering the values sent publicly. The values sent publicly are
different from the one used in the algorithm which conceals the
actual parameters to others. The implementation of this idea uses
two different algorithms and randomly choosing between the
algorithms. The choice of the algorithm is done using a random
number generator and this choice of the algorithm has to be
communicated so the decryptor uses the correct algorithm to
decrypt the encrypted data. Finally we explore a faster way to
implement the modular exponentiation algorithm used in the RSA
encryption and decryption.

Key words: Public Key Cryptosystem, Encryption and
Decryption Keys, Common Modulus, RSA cryptosystem,
Factoring attack, PRNG, TRNG.

I. INTRODUCTION

 The RSA algorithm is known to have several

weaknesses [1]. Some of the weaknesses are due to the
common modulus attack, the blinding attack, the small
encryption exponent “e”, the small decryption exponent “d”,

the forward search attack, timing attack, attack due to the
multiplicative properties, the cycling attack, attack due to
message concealing, the faulty encryption attack and
factoring the public key attack. The following methods are
adopted to enhance the security of the RSA algorithm.

1. Choosing two very large prime numbers approximately
of the same size,

Manuscript received on 22 September 2022 | Revised
Manuscript received on 01 October 2022 | Manuscript Accepted
on 15 November 2022 | Manuscript published on 30 November
2022.
* Correspondence Author (s)

Dr. Kannan Balasubramanian*, School of Computing, SASTRA
University, Thanjavur, India. Email: kannanb@cse.sastra.edu

M. Arun, Associate Professor, Department of Computer Science and
Engineering, Veltech Rangarajan Dr. Sagunthala R& D Institute of Science
and Technology (Deemed to be University), Chennai. (Tamil Nadu), India.

Dr. K. R. Sekar, School of Computing, SASTRA University, Thanjavur,
India. Email: sekar_kr@cse.sastra.edu

© The Authors. Published by Lattice Science Publication (LSP). This is
an open access article under the CC-BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

2. Choosing the encryption key “e” and the decryption key

“d” approximately of the same size.
3. Encrypting the common modulus “n” and the encryption

key “e” by a common key known to the encryptor and

the decryptor.
4. Modifying the RSA algorithm to overcome the timing

attacks on the algorithm.
In this paper we follow the fourth approach of modifying the
RSA public key encryption algorithm so it is not vulnerable to
timing attacks. We adopt the approach used in [2] and [3] to
modify the RSA algorithm. Since the proposed modification
to the RSA algorithm also can be known to the attacker, the
attacker can try the modified algorithm as well. Hence we
propose that the encryptor and the decryptor adopt more than
one variation of the RSA algorithm and randomly choose the
algorithm by methods known to the encryptor and the
decryptor based on the parameters exchanged between them.
Since the algorithm chosen cannot be easily guessed by the
attacker, by randomly choosing between two variations of the
RSA algorithm, the cryptosystem can be made secure. In the
next section, we survey the many variations of the RSA
algorithm to protect against the attacks

II. RELATED WORK

 The factorization attack where attackers try to factorize
the public modulus of the RSA cryposystem is the well known
attack on the RSA Cryptosystem [4][5]. Other attacks are
due to the choice of encryption key and decryption keys. A
small encryption key or a small decryption key can be easily
attacked using brute force guessing of the keys. The
common modulus attack refers to recovering the plaintext
when it is encrypted with two different keys using the same
modulus [6]. Other attacks relate to whether the attacker can
gain partial knowledge about the plaintext and timing attacks
on the RSA cryptosystem. Many proposals have been made
to protect the RSA cryptosystem against the attacks gaining
knowledge about the decryption key and gaining knowledge
about the plaintext transmitted. To overcome the attacks on
the RSA algorithm, many modifications have been proposed.
One way is to increase the number of key pairs used in the
RSA algorithm as proposed in [7]. This algorithm uses two
key pairs as against one pair as in the regular RSA algorithm.
The encryption applies the public key1 first followed by
public Key2 the decryption uses the private key2 and private
key1 with two different moduli n1 and n2. The algorithm
proposed in [8] modifies the RSA algorithm so the modulus is
a product of four prime numbers. It remains to be studied
whether the use of four prime numbers will increase the
difficulty of factorization of the modulus.

An Improved RSA Algorithm for Enhanced
Security

Kannan Balasubramanian, M. Arun, K. R. Sekar

mailto:kannanb@cse.sastra.edu
mailto:sekar_kr@cse.sastra.edu
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijcns.B1421.112222Journal%20Website:%20www.ijcns.latticescip&domain=www.ijcns.latticescipub.com
http://doi.org/10.54105/ijcns.B1421.112222

An Improved RSA Algorithm for Enhanced Security

2

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.B1421112222
DOI:10.54105/ijcns.B1421.112222
Journal Website: www.ijcns.latticescipub.com

Another variant uses three prime numbers instead of four but
substantially modifies the encryption and decryption
procedures of the RSA algorithm [9]. The algorithm
proposed in [10] uses three prime numbers in but the
encryption and decryption procedures are not modified. The
algorithm in [11] also uses four prime numbers but in
addition, it modifies the encryption key by applying the
algorithms used in DES symmetric encryption algorithm.
The modification proposed in [12] discusses choosing the
prime numbers large enough, so factorization is made
difficult. The modification proposed in [13] proposes to
prevent factorization attack on the modulus n by choosing
another value X, using which encryption key and decryption
keys are calculated. Attacker will not be able to guess the
decryption key by factorizing X since X is not the product of
p and q. The proposed algorithm in [14] modifies the
encryption by combining RSA encryption and Elgamal public
key encryption. Moreover to prevent factorization attack
three prime numbers are used in the calculation of n.
The implementation proposed in [15] focusses on computing
using very large prime numbers in software. The algorithm
proposed in [16] suggests choosing an alternate encryption
key using the nearest neighbour approach and using distance
‘r’ among the the possible keys.

III. THE PROPOSED ALGORITHM

 The two RSA variations we use in our implementation are
described below.
Algorithm 1 (the public key e is hidden):

1. Generate two large random prime numbers (p,q)
2. Calculate the modulus n=p*q

3. Calculate) = (p-1)(q-1)
4. Select e with the following condition
5. Select f = e*2 +1

6. Select d such that ed
7. Make (f,n) as the Public Key
8. Make the decryption key as (d,n)

9. Encryption C=

10. Decryption D=
The Algorithm1 hides the encryption key “e” but sends the

common modulus in the clear
 The Algorithm 2 hides the common modulus “n” but

sends the encryption key in clear. The proposed modification
to RSA algorithm depends on randomly choosing between the
two algorithms. We assume only two parties are involved and
the initiator of the encryption algorithm randomly chooses
between one of the above algorithms and sends the parameters
of the algorithm. Assume that User A is planning to use the
RSA cryptosystem with User B. User A initiates a Request

message with User B with a nonce . User A and User B
can agree on Algorithm 1 or Algorithm 2 based on the nonce
generated if this is nonce is truly random . In practice, the
random numbers generates are based on a starting value (i.e.
seed) which has to be chosen by the User A. To overcome this

problem, we can allow User B to send a random number

to A. User A now generates another random number
using the nonce received from User B and sends to B. Based

on the random number generated User A and User B agree on

Algorithm 1 if the random number is odd and vice versa.
This exchange of messages is shown in Fig 1.

Figure. 1 Protocol using Three Message Exchanges for
Agreement on the Algorithm to be used.

 The strength of the above algorithm is that the attacker
now has to guess both User A’s starting value and User B’s

starting value to know which algorithm is being used. The
chance of the user guessing both User A and User B is
relatively less if both users change the starting value often.
This algorithm can further be improved if the random nonces
chosen are based on True random number generators instead
of Pseudo random number generators. Most of the
Programming Languages including Java and C include a
system call to obtain the current time which can be used as the
seed value. The use of current time improves the random
value obtained as a result the choice of the algorithm based on
the nonce can be made be truly random. The protocol can
be simplified if the current time is used as the seed value for
the random number generator. Instead of three message
exchanges, only one message is required which is the random
number generated by User A. This modification is shown
in Fig.2. The implementation of the algorithm uses two
different moduli n1 and n2 and the encryption key uses n1 and
the decryption key uses the modulus n2.

Figure. 2. Protocol using Only One Message for

Algorithm Selection.

IV. IMPLEMENTATION OF THE PROPOSED

ALGORITHM

The following steps are followed in the improved algorithm.
1. Let “m” is the message to be transmitted.

2. User A generates the true random number based on
the algorithms for generating true random numbers
specified in [21].

3. User A sends the random number to User B over a
secure channel.

4. User A and User B execute Algorithm 1 or Algorithm 2
based on whether the random number is even or odd.

The above algorithm is easy to implement. The only
drawback in the algorithm is that the random number selected
by A is sent unencrypted to User B which introduces the
possibility of a third party listening or modifying the random
number over the channel.

http://doi.org/10.54105/ijcns.B1421.112222

Indian Journal of Cryptography and Network Security (IJCNS)
ISSN: 2582-9238 (Online), Volume-2 Issue-2, November 2022

3

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.B1421112222
DOI:10.54105/ijcns.B1421.112222
Journal Website: www.ijcns.latticescipub.com

 To avoid the manipulation of the random number, the
random number can be encrypted using a pre-shared key
between User A and User B. Including these steps, the above
algorithm can be modified as shown below.

1. The protocol involves User A and User B calculating the
secret-key “K” through the Diffie-Hellman Key
Exchange method.

2. User A generates the true random number based on

the algorithms for generating true random numbers
specified in [17][20][21].

3. User A sends the random number to User B

encrypted by key “K” channel.
4. User A and User B execute Algorithm 1 or Algorithm 2

based on whether the random number is even or odd

A. Implementation of the modular exponentiation
algorithm

The RSA algorithm described above involves calculating ma
mod n where a is the exponent as described in Algorithm 1
and Algorithm 2. The modular exponentiation is usually
implemented by the square and multiply algorithm by reading
the bits of the exponent from left to right or from right to left.
This implementation of the square-and-multiply algorithm is
shown in Fig.3.

Figure 3. The square-and-multiply algorithm for
Modular exponentiation in C

 As opposed to the square-and-multiply algorithm, a faster
method for calculating ma mod n is by calculating

where i is the number of bits in the binary representation of
the number a. We can note that all the above values may not
be required since only the values with the corresponding
binary bit set to 1 will be required. For example to calculate
347135 mod 547 we can see that

 mod 547 which is
obtained from the binary representation of 135 as
(10000111)2 This also can be represented as
() mod 547 using a short notation[22].
 We observe that

 (347 x 347) mod 547 = 69

 = 385

 = (385 x 385) = 535

 = (535 x 535) = 144

 = (144 x 144) = 497

 = (497 x 497) = 312

 = 525

 Finally the required value is computed as 347 x 69 x 385 x
525 = 305 What we have done is effectively squared the
base value and stored them and the final required value is
found by multiplying the necessary values. The required
number of multiplications equals the number of bits in the
binary representation of the exponent and the number of ones
in the binary representation of the exponent. After every
multiplication the reduction to the modulus value is done.
Reduction can be efficiently done by repeatedly subtracting
the modulus value until the value is less than the
modulus[18][19][20].
Another method for exponentiation [22] is by noting that ab

mod n can be calculated as

 ab = (if b is an even number. If b is an odd

number we can calculate
b-1 is even. After every exponentiation, the power is halved
and in log n steps will reach 1 if b is a power of 2. The
program code for implementing this is shown in Fig. 4.

Figure. 4 Program to perform modular exponentiation

when the exponent is a power of two in C
One can use the above method instead of the
square-and-multiply algorithm to calculate the modular
exponentiation. Although the number of exponentiations will
be large this method will be efficient when the exponent is
large and has few ones and remaining zeroes.

B. True random number generation

In Linux, the /dev/random and the/dev/urandom device can be
used to generate true random numbers. The Fig. 5 shows an
implementation of the true random number generation in
Linux.

Figure. 5. True random number generation in Linux
using the /dev/urandom device in C Programming

Language

V. ANALYSIS OF THE PROPOSED ALGORITHM

Since the parties involved in the public key cryptosystem
reveal either the encryption key or the common modulus, an
attacker capturing the public key for factoring the modulus
“n” has 50% chance of capturing the correct modulus over the

channel.

int binpow (int a, int b, int m) {
 a %= m;
 int res = 1;
 while (b > 0) {
 if (b & 1)
 res = res * a % m;
 a = a * a % m;
 b >>= 1;
 }
 return res;
}

int mod_expo (int base, int exponent, int modulus)
{int result = base;
 while (exponent > 0)
 {
 result = (result * result) % modulus;
 exponent = exponent >> 1;
 }
 return result;
}

#include <stdio.h>
int main(){
 int randomvalue;
 FILE *fpointer;
 fpointer = fopen("/dev/urandom", "rb");
 fread(&randomvalue,sizeof(int),1,fpointer);
 fclose(fpointer);
 printf("%d ",randomvalue);
 return 0; }

 fread(&randomvalue,sizeof(int),1,fpointer);
 fclose(fpointer);
 printf("%d ",randomvalue);
 return 0;
}

http://doi.org/10.54105/ijcns.B1421.112222

An Improved RSA Algorithm for Enhanced Security

4

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijcns.B1421112222
DOI:10.54105/ijcns.B1421.112222
Journal Website: www.ijcns.latticescipub.com

Hence the attacker spends twice the amount of time in the
factorization attack on the common modulus. The attacker
capturing the encryption key “e” to launch a chosen plaintext

attack has 50% chance of succeeding since the encryption key
is hidden 50% of the time by the algorithm. The attacks on
RSA can be overcome by the above algorithm with the use of
the true random number generator. One way to generate such
random number is by using the /dev/urandom device in the
Linux random which relies on the entropy provided by the
hard disk reads and writes to generate the random number
[21].

VI. CONCLUSION

 This research article tried to overcome the vulnerability in
the RSA encryption of having the send the key “e” and the

modulus “n” in the clear by using a novel method of hiding the

key “e” and the modulus “n”. It uses a method to choose from

two different algorithms Algorithm 1 which hides the
encryption key and Algorithm 2 which hides the modulus.
The choice between the two algorithms is made using a true
random number generator provided in the Linux /dev/random
device. By using this protocol, the time taken for the attacker
to crack the cryptosystem will be increased and hence this
method effectively the security of the RSA algorithm. The
implementation of modular exponentiation introduced
another procedure which will perform better when the
exponent has few ones.

REFERENCES

1. Bakhtiari,M., & Maarof,M.A, Serious Security Weakness in RSA
Cryptosystem, Int. J. of Computer Sci. Issues, Vol.9, Issue 1, No.3,
January 2012.

2. Intila,C, Gerardo,B & Medina, R, A study of public Key “e” in RSA

algorithm,https://iopscience.iop.org/article/10.1088/1757-899X/482/1/
012016/pdf

3. Intila,C, Gerardo B & Medina, R., Modified RSA algorithm based on
Key Generation, Proceedings of The IIER International Conf., Manila,
Philippines, 27th -28th June 2018.

4. Boneh,D., Twenty years of attacks on the RSA Cryptosystem, Notices of
the AMS, 203-213, 1999.

5. Mumtaz,M. & Ping,L., Forty years of attacks on the RSA
Cryptosystem: A Survey, J. of Discrete Mathematical Sciences &
Cryptography, 22(1), 9-29, 2019 [CrossRef]

6. Landau,S., A Brief Summary of attacks on RSA,
https://www.rose-hulman.edu/class/ma/holden/Archived_Courses/Mat
h479-0304/resources/attacks-rsa/

7. Abudin,J., Keot,S.K., Malakar,G., Borah,N.M., & Rahman.,M.,
Modified RSA Public Key Cryptosystem Using Two Key Pairs, Int. J.
of Computer Sci. and Information Technologies, Vol. 5.(3), 2014.
3548-3550.

8. Nivetha,A., Preethy Mary S. & Santosh Kumar S., Modified RSA
Encryption Keys using Four Keys, Int. J. of Engineering Research and
Tech., 3(7). 2015.

9. Zaid,M.M.A. & Hassan,S., Lightweight RSA Algorithm Using Three
Prime Numbers, Int. J. of Engineering and Tech., 7(4.36) 293-2956,
2018. [CrossRef]

10. Chowhan,S.S., & Jaju S.A., A Modified RSA algorithm to enhance
Security for Digital Signature. In Proceedings of Int. Conf. and
workshop on Computing and Communication, IEEE, Vancouver BC,
Canada, 2015.

11. Khanum,S., Sharma,B., & Beniwal,G., Hybrid Public Key
Cryptosystem combining RSA and DES algorithm, Int. J.of Innovations
in Engineering and Tech., 7(3), 466-471,2016

12. Sarjiyus,O, Enhancing RSA Security Capability using Public Key
Modification, Int. J. of Research and Scientific Innovation , 7(9),
September 2020.

13. Sahu,J, Singh,V,Sahu,V,& Chopra,A, An enhanced Version of RSA to
increase the Security, J. of Network Communication and Emerging
Technologies, 7(4),April 2017

14. Goyal,P., & Kumar,D., Implementation for Enhancement of
Computation Technique By Combining Enhanced RSA and El-Gamal
Public Key Cryptosystems, Int. J. of Computer Sci. and Tech., 5(2),
April-June 2014.

15. Obaid,T.A.S., Study A Public Key in RSA Algorithm, European J. of
Engineering Research and Sci., 5(4), 2020. [CrossRef]

16. Abu-Dawas,M.A, & Hussain,A.K., Enhancement of RSA Scheme using
Agreement Secure Information for Nearest Parameters, Int. J. of
Computer and Information Technology, 4(2), March 2015.

17. Patidar,R.,& Bhartiya,R, Implementation of Modified RSA
Cryptosystem Based on Offline Storage and Prime Number, Int. J. of
Computing and Tech., 1(2), March 2014. [CrossRef]

18. Patel,S.R., & Shah,K., Security Enhancement and Speed Monitoring of
RSA Algorithm, Int. J. of Eng. Development and Research, 2(2), 2014.

19. Al-Kaabi,Engr S.S, & Belhaouari, Methods Toward Enhancing RSA
Algorithm: A Survey, Int, J, of Network Security and its Applications,
11 (3) May 2019. [CrossRef]

20. Thiziers,A.H., Theodore, H.C., Zoueu, J.T. & Michel, B., Enhanced,
Modified and Secured RSA Cryptosystem based on n Prime Numbers
and Offline Storage for Medical Data Transmission via Mobile Phone,
Int. J. of Advanced Computer Sci. and Applications, Vol.10., No. 19,
2019[CrossRef]

21. Alzhrani,K.and Aljaedi,A., Windows & Linux Random Number
Generation Process: A Comparative Analysis, Int. J. of Computer
Applications, 113(8), 2015. [CrossRef]

22. Sepahvandi,S., Hosseinzadeh,M., K.Navi & A.Jalili, An improved
exponentiation algorithm for RSA Cryptosystem, IEEE Int, Conf, on
Research Challenges in Computer Sci., 2009. [CrossRef]

AUTHORS PROFILE

 Dr. Kannan Balasubramanian, is currently working
as Professor in the Department of Computer Science
and Engineering, School of Computing, Thanjavur.
He received his M.Sc.(Tech) degree in Computer
Science from BITS Pilani in 1989 and M.Tech degree
in Computer Science and Engineering from IIT
Bombay in 1991 and Ph.D degree in Computer

Science from UCLA in 1999. He has 15 years of teaching experience at
Mepco Schlenk Engineering College, Sivakasi. He worked on Virtual
Private Networks after finishing his doctorate. He has published two books
with IGI-Global and has published in many International Journals and
Conferences. His areas of Interest are Computer Networks,Cryptography and
Network Security, Cyber Security and Machine Learning for Cryptography.

M. Arun, is currently working as Associate Professor
in the Department of Computer Science and
Engineering at Veltech Rangarajan Dr. Sagunthala
R& D Institute of Science and Technology (Deemed
to be University), Chennai. He has 10 years of
teaching experience at Mepco Schlenk Engineering
College, Sivakasi and three years of teaching
experience at Amrita College of Engineering and
Technology, Nagercoil. He has published in many

international journals. His areas of interests are Networking, Network
Security and Machine Learning.

Dr. K. R. Sekar, is working as a Senior Assistant
professor (SAP) in the department of computer
science and engineering, School of Computing,
SASTRA Deemed University, India for the past 15
years. His area of research is towards hesitant fuzzy,
Big Data Analytics, Machine learning and Data
Science.

https://iopscience.iop.org/article/10.1088/1757-899X/482/1/012016/pdf
https://iopscience.iop.org/article/10.1088/1757-899X/482/1/012016/pdf
https://doi.org/10.1080/09720529.2018.1564201
https://www.rose-hulman.edu/class/ma/holden/Archived_Courses/Math479-0304/resources/attacks-rsa/
https://www.rose-hulman.edu/class/ma/holden/Archived_Courses/Math479-0304/resources/attacks-rsa/
https://doi.org/10.14419/ijet.v7i4.36.23790
https://doi.org/10.24018/ejers.2020.5.4.1843
https://doi.org/10.1109/ICCIC.2013.6724176
https://doi.org/10.2139/ssrn.3412776
https://doi.org/10.14569/IJACSA.2019.0101050
https://doi.org/10.5120/19847-1710
https://doi.org/10.1109/ICRCCS.2009.40
http://doi.org/10.54105/ijcns.B1421.112222

